Planarians: an In Vivo Model for Regenerative Medicine
نویسندگان
چکیده
The emergence of regenerative medicine has raised the hope of treating an extraordinary range of disease and serious injuries. Understanding the processes of cell proliferation, differentiation and pattern formation in regenerative organisms could help find ways to enhance the poor regenerative abilities shown by many other animals, including humans. Recently, planarians have emerged as an attractive model in which to study regeneration. These animals are considering as in vivo plate, during which we can study the behavior and characristics of stem cells in their own niche. A variety of characteristic such as: simplicity, easy to manipulate experimentally, the existence of more than 100 years of literature, makes these animals an extraordinary model for regenerative medicine researches. Among planarians free-living freshwater hermaphrodite Schmidtea mediterranea has emerged as a suitable model system because it displays robust regenerative properties and, unlike most other planarians, it is a stable diploid with a genome size of about 4.8×10(8) base pairs, nearly half that of other common planarians. Planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of anybody region. neoblasts represent roughly 25~30 percent of all planarian cells and are scattered broadly through the parenchyma, being absent only from the animal head tips and the pharynx. Two models for neo-blast specification have been proposed; the naive model posits that all neoblasts are stem cells with the same potential and are a largely homogeneous population.
منابع مشابه
The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration
Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This reviva...
متن کاملCytoskeletal proteins and morphogenesis in planarians
Regeneration processes employ a series of differentiative events related to various embryonic morphogenetic phenomena in which the cytoskeleton plays a fundamental role. Planarians are an excellent model to study development mechanism because they show an exceptional physiological morphogenetic plasticity that is also at the basis of their extraordinary regenerative ability. In this paper we di...
متن کاملOn-chip immobilization of planarians for in vivo imaging
Planarians are an important model organism for regeneration and stem cell research. A complete understanding of stem cell and regeneration dynamics in these animals requires time-lapse imaging in vivo, which has been difficult to achieve due to a lack of tissue-specific markers and the strong negative phototaxis of planarians. We have developed the Planarian Immobilization Chip (PIC) for rapid,...
متن کاملPlanarian brain regeneration as a model system for developmental neurotoxicology
Freshwater planarians, famous for their regenerative prowess, have long been recognized as a valuable in vivo animal model to study the effects of chemical exposure. In this review, we summarize the current techniques and tools used in the literature to assess toxicity in the planarian system. We focus on the planarian's particular amenability for neurotoxicology and neuroregeneration studies, ...
متن کاملStudying planarian regeneration: insights into how polarity is re-established
Neurodegenerative and cardiovascular diseases, as well as stroke, infection and injury, require therapies that aim to replace lost, damaged or inoperative tissues. Regenerative medicine is therefore a major focus of medical research. Whereas regeneration in humans is limited, several vertebrates, such as salamanders and fish, can regenerate amputated body parts with high efficiency (reviewed in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015